A Hidden Markov Model Approach to the Problem of Heuristic Selection in Hyper-Heuristics with a Case Study in High School Timetabling Problems

نویسندگان

  • Ahmed Kheiri
  • Ed Keedwell
چکیده

Operations research is a well-established field that uses computational systems to support decisions in business and public life. Good solutions to operations research problems can make a large difference to the efficient running of businesses and organisations and so the field often searches for new methods to improve these solutions. The high school timetabling problem is an example of an operations research problem and is a challenging task which requires assigning events and resources to time slots subject to a set of constraints. In this article, a new sequence-based selection hyper-heuristic is presented that produces excellent results on a suite of high school timetabling problems. In this study, we present an easy-to-implement, easy-to-maintain, and effective sequence-based selection hyper-heuristic to solve high school timetabling problems using a benchmark of unified real-world instances collected from different countries. We show that with sequence-based methods, it is possible to discover new best known solutions for a number of the problems in the timetabling domain. Through this investigation, the usefulness of sequence-based selection hyper-heuristics has been demonstrated and the capability of these methods has been shown to exceed the state of the art.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving high school timetabling problems worldwide using selection hyper-heuristics

High school timetabling is one of those recurring NP-hard real-world combinatorial optimisation problems that has to be dealt with by many educational institutions periodically, and so has been of interest to practitioners and researchers. Solving a high school timetabling problem requires scheduling of resources and events into time slots subject to a set of constraints. Recently, an internati...

متن کامل

A genetic algorithm selection perturbative hyper-heuristic for solving the school timetabling problem

Research in the domain of school timetabling has essentially focused on applying various techniques such as integer programming, constraint satisfaction, simulated annealing, tabu search and genetic algorithms to calculate a solution to the problem. Optimization techniques like simulated annealing, tabu search and genetic algorithms generally explore a solution space. Hyper-heuristics, on the o...

متن کامل

A stochastic local search algorithm with adaptive acceptance for high-school timetabling

Automated high school timetabling is a challenging task. This problem is a well known hard computational problem which has been of interest to practitioners as well as researchers. High schools need to timetable their regular activities once per year, or even more frequently. The exact solvers may fail to find a solution for a given instance of the problem. A selection hyper-heuristic can be de...

متن کامل

Case Based Heuristic Selection for Examination Timetabling

The work presented in this paper could be thought of as a case based hyper-heuristic approach for examination timetabling problems. A hyper-heuristic can be taken to be an automated approach to choose heuristics. Heuristics and meta-heuristics are employed in this capacity in [1] and [2]. In this paper the case-based paradigm is explored as a heuristic selector for examination timetabling probl...

متن کامل

A discrete-event optimization framework for mixed-speed train timetabling problem

Railway scheduling is a complex task of rail operators that involves the generation of a conflict-free train timetable. This paper presents a discrete-event simulation-based optimization approach for solving the train timetabling problem to minimize total weighted unplanned stop time in a hybrid single and double track railway networks. The designed simulation model is used as a platform for ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Evolutionary computation

دوره 25 3  شماره 

صفحات  -

تاریخ انتشار 2017